
LLOYDS BANK ONLINE PAYMENTS
CONNECT INTEGRATION GUIDE

Version 2023

£
ă É

Contents
Getting Support 1

1. Introduction 1

2. Payment process options 1

 2.1 Hosted Payment Page 1

 2.2 Direct Post 2

3. Getting Started 2

 3.1 Checklist 2

 3.2 ASP Example 2

 3.3 PHP Example 3

 3.4 Amounts for test transactions 4

4. Mandatory Fields 4

5. Optional Form Fields 6

6. Using your own forms to capture the data 9

 6.1 Capture payment details 9

 6.2 Capture billing information 9

 6.3 Capture shipping information 10

 6.4 Validity checks 11

7. Additional Custom Fields 11

8. 3-D Secure 12

 8.1 3-D Secure Split Authentication 14

9. MCC 6012 Mandate in UK 16

10. Data Vault 16

11. Recurring Payments 17

12. Transaction Response 17

 12.1 Response to your Success/Failure URLs 17

 12.2 How to generate a hash for a response 19

 12.3 Creating the extended response hash 19

 12.4 Server-to-Server Notification 19

Appendix I – How to generate a hash for a request 21

Appendix II – ipg-util.asp 22

Appendix III – ipg-util.php 23

Appendix IV – Currency Code List 25

Appendix V – Payment Method List 29

Appendix VI – PayPal 29

Appendix VII – Digital Wallets 30

1

Getting Support

There are different manuals available for Lloyds Bank Online Payments (LBOP) eCommerce solutions. This Integration Guide will
be the most helpful for integrating hosted payment forms or a Direct Post.

For information about settings, customisation, reports and how to process transactions manually (by keying in the information)
please refer to the User Guide Virtual Terminal.

If you have read the documentation and cannot find the answer to your question, please contact your local support team.

1. Introduction

The Connect solution provides a quick and easy way to add payment capabilities to your website.

Connect manages the customer redirections that are required in the checkout process of many payment methods or
authentication mechanisms and gives you the option to use secure hosted payment pages which can reduce the burden of
compliance with the Data Security Standard of the Payment Card Industry (PCI DSS).

This document describes how to integrate your website using Connect and provides step by step instructions on how to quickly
start accepting payments from your webshop.

When making decisions on your way of integration, please consider that we do not recommend to use the hosted payment
forms inside an iFrame since some Internet browsers do not allow cookies to be sent to the 3rd party hosts, moreover
some features (e.g.: 3-D Secure authentications) and some Alternative Payment methods that involve redirections to the
3rd party services (e.g. PayPal) do not allow displaying their screens within an iFrame. However, if you still plan to embed
our hosted payment pages inside an iFrame you must use the 'parentUri' parameter to specify an URL of a page, where the
hosted payment page will be embedded.

Depending on your business processes, it can also make sense to additionally integrate our Web Service API solution (see Web
Service API Integration Guide).

2. Payment process options

The Connect solution provides several different options for the payment process to support integrations where you handle
most of the customer interactions on your own website up to integrations where you use ready-made form pages for the entire
payment process.

2.1 Hosted Payment Page
If you want to fully outsource the payment process in order not to have any sensitive cardholder data on your systems, you can use
our ready-made hosted pages for your customers to enter their payment information.

The most important aspect around the usage of hosted payment page is the security of sensitive cardholder data. When you
decide to let your customers enter their credit card details on the page that we provide and host on our servers for this purpose, it
facilitates your compliance with the Data Security Standard of the Payment Card Industry (PCI DSS) as the payment processing is
completely hosted by LBOP.

For a standard hosted payment page integration, you should use the checkout option ‘combinedpage’ that consolidates the
payment method choice and the typical next step (e.g.: entry of card details or selection of bank) in a single page, which gets
automatically optimized for different kinds of user devices (e.g.: PC, smartphone, tablet, etc.).

The hosted page is localised in many languages and can be easily customised with your merchant’s logo, colors, and font types
to make it fit to the look and feel of your shop environment (refer to the User Guide Virtual Terminal to learn more). It also shows
your merchant’s name (i.e.: legal name) and allows you to display a summary of the purchased items to your customer in the ‘Your
Order’ box.

2

If you do not want to let your customer select the payment method on our hosted page but want to handle that part upfront
within your shop environment, you should submit a value for the parameter ‘paymentMethod’ in your request to the gateway.
In addition, if you do not want to distinguish between different card brands (but just card vs. alternative payment methods), you
can send a valid card brand value for the parameter ‘paymentMethod’ and your customer will see a hosted page for the card
details entry with no card brand logo shown. Please contact your local support team if you want to enable this feature. This will be
managed with a specific setting performed on your account (service configuration) (‘hideCardBrandLogoInCombinedPage’).

If you do not submit a value for the parameter ‘paymentMethod’, the gateway will take your customer to a hosted page to choose
from the payment methods activated for your store.

If you do not include in your request the fields like e.g.: the card number or the expiry date for a card payment, the gateway will
take your customer to a hosted page to collect this information as being mandatory for a transaction processing.

When e.g.: you plan to integrate a specific local alternative payment method i.e.: Local Wallets India, PayLater by ICICI Bank
and RuPay, or you require the gateway to collect a full set of billing and/or shipping information, or your consumers use an old
operating system with outdated browser versions, please contact your local support team to discuss an alternative hosted
payment page integration while using the legacy checkout option ‘classic’.

2.2 Direct Post
In the scenarios where you prefer not to use a hosted payment page, you can submit the required customer data directly from
your own form to LBOP, but please be aware that if you store or process sensitive cardholder data within your own application, you
must ensure that your system components are compliant with the Data Security Standard of the Payment Card Industry (PCI DSS).

You create the payment form and display it within your website or app. When your customer has entered the card details and
presses the “continue button”, the customer’s device sends the payment information directly to the gateway.

If you choose the Direct Post option and create your own forms, there are additional fields that must be included in your
transaction request to the gateway, which are listed in the chapter on using your own forms to capture the data.

3. Getting Started

This section provides a simple example on how to integrate your website using the “combinedpage” checkout option.
Examples are provided using ASP and PHP. This section assumes that the developer has a basic understanding of his chosen
scripting language.

3.1 Checklist
In order to integrate with the payment gateway, you must have the following items:

• Store Name

This is the ID of the store that was given to you by Lloyds Bank Cardnet.
For example: 10123456789

• Shared Secret

This is the shared secret provided to you by Lloyds Bank Cardnet.
This is used when constructing the hash value (see more below).

3.2 ASP Example
The following ASP example demonstrates a simple page that will communicate with the payment gateway.

When the cardholder clicks Submit, they are redirected to the LBOP secure page to enter the card details. After payment has been
completed, the user will be redirected to the merchant’s receipt page. The location of the receipt page can be configured.

3

<html>

 <head><title>IPG Connect Sample for ASP</title></head>

 <body>

 <p><h1>Order Form</h1></p>

 <form method="post" action=" https://test.ipg-online.com/connect/gateway/processing ">

 <input type="hidden" name="txntype" value="sale">

 <input type="hidden" name="timezone" value="Europe/Berlin"/>

 <input type="hidden" name="txndatetime" value="<% getDateTime() %>"/>

 <input type="hidden" name="hash_algorithm" value="HMACSHA256"/>

 <input type="hidden" name="hashExtended" value="<% call createExtendedHash("13.00","978") %>"/>

 <input type="hidden" name="storename" value="10123456789" />

 <input type="hidden" name="checkoutoption" value="combinedpage"/>

 <input type="hidden" name="paymentMethod" value="M"/>

 <input type="text" name="chargetotal" value="13.00" />

 <input type="hidden" name="currency" value="978"/>

 <input type="submit" value="Submit">

 </form>

 </body>

</html>

The code presented in Appendix II represents the included file ipg-util.asp. It includes code for generating a hash as is required
by LBOP. The provision of a hash in the example ensures that this merchant is the only merchant that can send in transactions for
this store.

Note: the POST URL used is for integration testing only. When you are ready to go into production, please contact Lloyds Bank
Cardnet and you will be provided with the live production URL.

Note: the included file, ipg-util.asp uses a server side JavaScript file to build the hash. This file can be provided on request. To
prevent fraudulent transactions, it is recommended that the hash is calculated within your server and JavaScript is not used like
shown in the samples mentioned.

3.3 PHP Example
The following PHP example demonstrates a simple page that will communicate with the payment gateway.

When the cardholder clicks Submit, they are redirected to the LBOP secure page to enter the card details. After payment has been
completed, the user will be redirected to the merchant’s receipt page. The location of the receipt page can be configured.

<html>

<head><title>IPG Connect Sample for PHP</title></head>

<body>

<p><h1>Order Form</h1>

<form method="post" action="https://test.ipg-online.com/connect/gateway/processing">

<input type="hidden" name="txntype" value="sale">

<input type="hidden" name="timezone" value="Europe/Berlin"/>

<input type="hidden" name="txndatetime" value="<?php echo getDateTime() ?>"/>

<input type="hidden" name="hash_algorithm" value="HMACSHA256"/>

<input type="hidden" name="hashExtended" value="<?php echo createExtendedHash("13.00","978") ?>"/>

<input type="hidden" name="storename" value="10123456789"/>

4

<input type="hidden" name="checkoutoption" value="combinedpage"/>

<input type="hidden" name="paymentMethod" value="M"/>

<input type="text" name="chargetotal" value="13.00"/>

<input type="hidden" name="currency" value="978"/>

<input type="submit" value="Submit">

</form>

</body>

</html>

Note that the POST URL used in this example is for integration testing only. When you are ready to go into production, please
contact Lloyds Bank Cardnet and you will be provided with the live production URL.

The code presented in Appendix III represents the included file ipg-util.php. It includes code for generating a hash as is required
by LBOP. The provision of a hash in the example ensures that this merchant is the only merchant that can send in transactions for
this store.

3.4 Amounts for test transactions
When using our test system for integration, odd amounts (e.g. 13.01 EUR or 13.99 EUR) can cause the transaction to decline as
these amounts are sometimes used to simulate unsuccessful authorisations.

We therefore recommend using even amounts for testing purpose, e.g. 13.00 EUR like in the example above.

4. Mandatory Fields

Depending on the transaction type, the following form fields must be present in the form being submitted to the payment
gateway (X = mandatory field). Please refer to this Integration Guide’s Appendixes for implementation details in relation to
alternative payment methods and the other product options.

Field Name Description, possible values and format

Sa
le

tr

an
sa

ct
io

n

Pr
eA

ut
h*

Po
st

Au
th

*

Vo
id

Pa
ye

rA
ut

h*
*

txntype 'sale’, 'preauth’, 'postauth’, 'void’ or ‘payer_auth’

(the transaction type – please note the descriptions of
transaction types in the User Guide Virtual Terminal)
The possibility to send a ‘void’ using the Connect
interface is restricted. Please contact your local
support team if you want to enable this feature.

X
(sale)

X
(preauth)

X
(postauth)

X
(void)

X
(payer_auth)

5

Field Name Description, possible values and format

Sa
le

tr

an
sa

ct
io

n

Pr
eA

ut
h*

Po
st

Au
th

*

Vo
id

Pa
ye

rA
ut

h*
*

timezone Time zone of the transaction in
Area/Location format, e.g.

Africa/Johannesburg

America/New_York

America/Sao_Paulo

Asia/Calcutta

Australia/Sydney

Europe/Amsterdam

Europe/Berlin

Europe/Dublin

Europe/London

Europe/Rome

X X X X X

txndatetime YYYY:MM:DD-hh:mm:ss
(exact time of the transaction)

X X X X X

hash_algorithm This is to indicate the algorithm that you use for hash
calculation. The possible values are:

HMACSHA256

HMACSHA384

HMACSHA512

Only one algorithm value should be used.

X X X X X

hashExtended The extended hash needs to be calculated using all
non-empty gateway specified request parameters in
ascending order of the parameter names, where the
upper-case characters come before the lower case
(based on ASCII value) and the shared secret must be
used as the secret key for calculating the hash value.

When you are using Direct Post, there is also an option
where you do not need to know the card details (PAN,
CVV and Expiry Date) for the hash calculation. This will
be managed with a specific setting performed on your
store. Please contact your local support team if you
want to enable this feature.

An example of how to generate a hash is given in
Appendix I.

X X X X X

storename This is the ID of the store provided by LBOP. X X X X X

chargetotal This is the total amount of the transaction using a
dot or comma as decimal separator, e.g. 12.34 for an
amount of 12 Euro and 34 Cent. Group separators
like1,000.01 / 1.000,01 are not allowed.

X X X X X

checkoutoption Set the value for this parameter to ‘combinedpage’ for
a standard hosted payment page integration.

X X X

currency The numeric ISO code of the transaction currency, e.g.
978 for Euro (see examples in Appendix IV)

X X X X X

oid The order ID of the initial action a PostAuth shall be
initiated for.

X X

6

Field Name Description, possible values and format

Sa
le

tr

an
sa

ct
io

n

Pr
eA

ut
h*

Po
st

Au
th

*

Vo
id

Pa
ye

rA
ut

h*
*

ipgTransactionId

or

merchantTransactionId

Exact identification of a transaction that shall be
voided. You receive this value as result parameter‚
‘ipgTransactionId’ of the corresponding transaction.

Alternatively, ‘merchantTransactionId’ can be used for
the Void in case the merchant has assigned one.

X

* The transaction types ‘preauth’ and ‘postauth’ only apply to the payment methods credit card, PayPal.

** The transaction type ‘payer_auth’ is only required if you want to split the 3-D Secure authentication process from the payment transaction (authorisation) process. See more
information in the 3-D Secure section of this guide.

Please see a list of currencies and their ISO codes in Appendix IV.

5. Optional Form Fields

Field Name Description, possible values and format

cardFunction This field allows you to indicate the card function in case of combo cards which provide credit and debit
functionality on the same card. It can be set to ‘credit’ or ‘debit’.

The field can also be used to validate the card type in a way that transactions where the submitted card
function does not match the card’s capabilities will be declined. If you e.g.: submit “cardFunction=debit”
and the card is a credit card, the transaction will be declined.

comments Place any comments here about the transaction.

customerid This field allows you to transmit any value, e.g. your ID for the customer.

dynamicMerchantName The name of the merchant to be displayed on the cardholder’s statement. The length of this field should
not exceed 25 characters. If you want to use this field, please contact your local support team to verify if
this feature is supported in your country.

hideOrderDetails Set this parameter to ‘true’ when you want to hide (remove) the ‘Your Order' box from our hosted
payment page.

highRiskPurchaseIndicator This optional parameter needs to be set to ‘true’, for transactions handling a cryptocurrency and
initiated from a MCC 6051 (Quasi Cash—Merchant) store; or for transactions handling high risk
securities initiated from the store with MCC 6211 (Securities—Brokers/ Dealers).

invoicenumber This field allows you to transmit any value, e.g. an invoice number or class of goods. Please note that the
maximum length for this parameter is 48 characters.

item1 up to item999 Line items are regular Connect integration key-value parameters (URL-encoded), where:

• the name is a combination of the keyword item and a number, where the number indicates the list
position e.g.: item1

• the value is represented by a semicolon-separated list of values, where the position indicates the
meaning of the list item property e.g.: <1>;<2>;<3>;<4>;<5>;<6>;<7>

The ‘item1’ to ‘item999’ parameters allow you to send basket information in the following format:

id;description;quantity;item_total_price;sub_total;vat_tax;shipping;local_
tax;category;detailed_category

7

Field Name Description, possible values and format

language This parameter can be used to override the default payment page language configured for your
merchant store.

The following values are currently possible:

Language Value

Chinese (simplified) zh_CN

Chinese (traditional) zh_TW

Czech cs_CZ

Danish da_DK

Dutch nl_NL

English (USA) en_US

English (UK) en_GB

Finnish fi_FI

French fr_FR

German de_DE

Greek el_GR

Hungarian hu_HU

Italian it_IT

Japanese ja_JP

Norwegian (Bokmål) nb_NO

Polish pl_PL

Portuguese (Brazil) pt_BR

Serbian (Serbia) sr_RS

Slovak sk_SK

Slovenian sl_SI

Spanish (Spain) es_ES

Spanish (Mexico) es_MX

Swedish sv_SE

merchantTransactionId Allows you to assign a unique ID for the transaction. This ID can be used to reference to this transaction
in a PostAuth or Void request (referencedMerchantTransactionId).

mobileMode The legacy checkout option specific parameter: If your customer uses a mobile device for shopping at
your online store you can submit this parameter with the value ‘true’, when using the ‘classic’ checkout
option. This will lead your customer to a payment page flow that has been specifically designed for
mobile devices.

mode The legacy checkout option specific parameter: If you are building a payment request for the Sale,
PreAuth or PayerAuth transaction, when using the ‘classic’ checkout option, your request needs to
include a value for one of the three different modes to define the range of data that shall be captured by
the gateway:

• ‘payonly’ – shows a hosted page to collect the minimum set of information for the transaction
(e. g. cardholder name, card number, expiry date and card code for a credit card transaction),

• ‘payplus’ – in addition to the above, the payment gateway collects a full set of billing information on
an additional page,

• ‘fullpay’ – in addition to the above, the payment gateway displays a third page to also collect
shipping information.

8

Field Name Description, possible values and format

oid This field allows you to assign a unique ID for your order. If you choose not to assign an order ID, the
LBOP system will automatically generate one for you.

Please note, that only the following characters are allowed, if you are generating oid yourselves: A-Z, a-z,
0-9, “-”

parentUri If you plan to embed our hosted payment pages inside an iFrame you must use this parameter, with the
maximum length of 2048 characters, to specify an URL of a page, where the hosted payment page will
be embedded. However, note that we do not recommend using the hosted payment forms inside an
iFrame since some Internet browsers do not allow cookies to be sent to the 3rd party hosts, moreover
some features (e.g.: 3-D Secure authentications) and some Alternative Payment methods that involve
redirections to the 3rd party services (e.g. PayPal) do not allow displaying their screens within an iFrame.

partialApproval The partial approval feature is particularly useful when the transaction amount exceeds the available
funds on the customer’s card. This feature will allow an approval of the available amount to pay for a
portion of the transaction, then the remainder can be paid using another payment method. If you are
eligible to use this feature, then you can use this parameter to indicate whether to allow partial approval
or not. Valid values:

• true

• false (default)

paymentMethod If you let the customer select the payment method (e.g. Mastercard, Visa) in your shop environment or
want to define the payment type yourself, transmit the parameter ‘paymentMethod’ along with your
Sale or PreAuth transaction.

If you do not submit this parameter, the payment gateway will display a drop-down menu to the
customer to choose from the payment methods available for your shop.

For valid payment method values please refer to Appendix V.

ponumber This field allows you to submit a Purchase Order Number with up to 50 characters.

refer This field describes who referred the customer to your store.

referencedMerchantTransactionID This field allows to reference to a merchantTransactionId of a transaction when performing a Void.
This can be used as an alternative to ipgTransactionId if you assigned a merchantTransactionId in the
original transaction request.

referencedSchemeTransactionId Credentials on file (COF) specific parameter. This field allows you to include in your request
‘schemeTransactionId’ that has been returned in the response of the initial transaction to provide a
reference to the original transaction, which stored the credentials for the first time.

responseFailURL The URL where you wish to direct customers after a declined or unsuccessful transaction (your Sorry
URL) – only needed if not setup in Virtual Terminal / Customisation.

responseSuccessURL The URL where you wish to direct customers after a successful transaction (your Thank You URL) – only
needed if not setup in Virtual Terminal / Customisation.

shipping This parameter can be used to submit the shipping fee, in the same format as ‘chargetotal’. If you
submit ‘shipping’, the parameters ‘subtotal’ and ‘vattax’ have to be submitted as well. Note that the
‘chargetotal’ has to be equal to ‘subtotal’ plus ‘shipping’ plus ‘vattax’.

trxOrigin This parameter allows you to use the secure and hosted payment form capabilities within your own
application. Possible values are:

• ‘MAIL’ (for transactions where the payment details are captured manually and provided in written
form the Card Code entry is not allowed),

• ‘PHONE’ (for transactions where you have received the order over the phone and enter the payment
details yourself the Card Code entry is required),

• ‘ECI‘ (for standard usage in an eCommerce environment where your customer enters the
payment details).

unscheduledCredentialOnFileType Credentials on file (COF) specific parameter. This field allows you to flag transactions as unscheduled
credential on file type. Currently the valid values are: FIRST, CARDHOLDER_INITIATED or MERCHANT_
INITIATED to advise the scenario if the credential is stored on your side.

vattax This field allows you to submit an amount for Value Added Tax or other taxes, e.g.: GST in Australia.
Please ensure the sub total amount plus shipping plus tax equals the charge total.

9

6. Using your own forms to capture the data

If you decide to create your own forms, i.e.: Direct Post (not to use the ones provided and hosted by LBOP), there are additional
mandatory fields that you need to include. These fields are listed in the following sections.

Using Direct Post allows you to have full control over the look and feel of the form where your customers enter their card details for
payment while simultaneously avoiding the need to have sensitive card data within your systems.

It is also important that you check if JavaScript is activated in your customer’s browser. If necessary, inform your customer that
JavaScript needs to be activated for the payment process.

6.1 Capture payment details
After your customer has decided how to pay, you present a corresponding HTML-page with a form to enter the payment data as
well as hidden parameters with additional transaction information. In addition to the mandatory fields, your form needs to contain
the following fields (part of them can be hidden).

For Credit/Debit Card fields

Field Name Description, possible values and format Credit Card
(+ Visa Debit/

Electron/Delta)

Maestro

cardnumber Your customer’s card number. 12-24 digits. X X

expmonth The expiry month of the card (2 digits) X X

expyear The expiry year of the card (4 digits) X X

cvm The card code, in most cases on the backside of the card
(3 to 4 digits)

X X

as an optional field “if
on card”

6.2 Capture billing information
It is possible to additionally transfer billing information to the payment gateway. The following table describes the format of these
additional fields:

Field Name Possible Values Description

bcompany Alphanumeric

characters,

spaces, and

dashes limited to 96

Customer’s Company

bname Alphanumeric

characters,

spaces, and

dashes limited to 96

Customer’s Name

baddr1 Limit of 96

characters,

including

spaces

Customer’s Billing Address 1

10

Field Name Possible Values Description

baddr2 Limit of 96

characters,

including

spaces

Customer’s Billing Address 2

bcity Limit of 96

characters,

including

spaces

Billing City

bstate Limit of 96

characters,

including

spaces

State, Province or Territory

bcountry 2 Letter Country Code Country of Billing Address

bzip Limit of 24

characters,

including

spaces

Zip or Postal Code

phone Limit of 32 Characters Customer’s Phone Number

fax Limit of 32 Characters Customer’s Fax Number

email Limit of 254 Characters Customer’s Email Address

6.3 Capture shipping information
It is possible to additionally transfer shipping information to the payment gateway. The billing information is as specified above.
The following table describes the format of the shipping fields:

Field Name Possible Values Description

sname Alphanumeric

characters,

spaces, and

dashes limited to 96

Ship-to Name

saddr1 Limit of 96

characters,

including

spaces

Shipping Address Line 1

saddr2 Limit of 96

characters,

including

spaces

Shipping Address Line 2

scity Limit of 96

characters,

including

spaces

Shipping City

11

Field Name Possible Values Description

sstate Limit of 96

characters,

including

spaces

State, Province or Territory

scountry 2 letter country code Country of Shipping Address

szip Limit of 24

characters,

including

spaces

Zip or Postal Code

sphnumber Limit of 32 Characters Customer’s Phone Number

semail Limit of 254 Characters Customer’s Email Address

6.4 Validity checks
Prior to the authorisation request for a transaction, the payment gateway performs the payment methods’ specific validation checks:

For Credit/Debit Card the following checks are performed:

• The expiry date of cards needs to be in the future

• The Card Security Code field must contain 3 or 4 digits

• The structure of a card number must be correct (LUHN check).

If the submitted data should not be valid, the payment gateway presents a corresponding data entry page to the customer.

To avoid this hosted page when using your own input forms for the payment process, you can transmit the following additional
parameter along with the transaction data:

full_bypass=true

In that case you get the result of the validity check back in the transaction response and can display your own error page
based on this.

7. Additional Custom Fields

You may want to use further fields to gather additional customer data geared toward your business specialty, or to gather
additional customer demographic data which you can then store in your own database for future analysis. You can send as many
custom fields to the payment gateway as you wish, and they will get returned along with all other fields to the response URL.

Up to ten custom fields can be submitted in a way that they will be stored within the gateway so that they appear in the Virtual
Terminal’s Order Detail View as well as in the response to Inquiry Actions that you send through our Web Service API.

Field Name Description, possible values and format

customParam_key If you want to use this feature, please send the custom fields in the format customParam_
key=value.

The maximum length of a custom parameter is 100 characters.

Example:<input type="hidden" name="customParam _ color"
value="green"/>

To remain compliant the custom fields are not to be used to submit credit card detail or sensitive card holder information, please
use the designated fields defined by the Gateway for this purpose.

12

8. 3-D Secure

The Connect solution includes the ability to authenticate transactions using Verified by Visa, Mastercard SecureCode, American
Express SafeKey and Diners ProtectBuy to provide an additional security layer for online card transactions.

If your store is enabled for 3-D Secure, all Sale or preAuth transactions that you initiate by posting an HTML form will by default
go through the 3-D Secure process without the need for you to do anything, i.e.: cardholders with an enrolled card will see a page
from the card issuer to enter the password unless the card issuer decides not to check it.

The generic fields to be considered:

Field Name Description, possible values and format

authenticateTransaction Optional parameter to be set either to ‘true’ or ‘false’ to enable or disable 3-D Secure
authentication on a Transaction-by-Transaction basis.

Example for a transaction with 3-D Secure:

<input type="hidden" name="authenticateTransaction"

value="true"/>

Example for a transaction without 3-D Secure:

<input type="hidden" name="authenticateTransaction"
value="false"/>

threeDSRequestorChallengeIndicator Optional parameter for EMV 3-D Secure (2.0) to be set tone of the values from the list below
in order to indicate the preferred type of authentication. If no specific value is present in the
transaction request, default value “01” is used.:

01 – no preference (set as default value)

02 – no challenge requested

03 – challenge requested 3-DS requestor preference

04 – challenge requested mandate

05 – No challenge requested (Transaction Risk Analysis is already performed)

06 – No challenge requested (Data Share Only)

07 – No challenge requested (SCA is already performed)

08 – No challenge requested (Utilise approved list exemption if no challenge required)

09 – Challenge requested (‘Allow’ prompt requested if challenge required)

threeDSTransType The parameter for EMV 3-D Secure (2.0) represents the type of purchased item, mandatory
for Visa and Brazilian market, otherwise optional. If no specific value is present in the
transaction request, default value is used.

01 – Goods/ Service Purchase (default value)

03 – Check Acceptance

10 – Account Funding

11 – Quasi-Cash Transaction

28 – Prepaid Activation and Load

13

scaExemptionIndicator1 Optional parameter to request an exemption from Strong Customer Authentication (SCA)
without the need to perform 3-D Secure authentication. Currently available values:

• Low Value Exemption

• TRA Exemption

• Trusted Merchant Exemption

• SCP Exemption

• Delegated Authentication

• Authentication Outage Exception

Note this parameter is relevant only for the European merchants impacted by the PSD2
requirements.

skipTRA This optional parameter allows you to use 3-D Secure even if the transaction has been
evaluated as low risk and would be eligible for an exemption. Currently available values:

• true

• false

When your store has been set up with Transaction Risk Analysis (TRA) service, but you do
want to force 3-D Secure authentication for a certain transaction, set ‘skipTRA’ to ‘true’.

Note this parameter is relevant only for the European merchants impacted by the PSD2
requirements.

oid Use this optional parameter to assign an identifier for your order; in case you plan to
authenticate the transaction using EMV 3-DS protocol (aka 3-DS 2.1 or 2.2) only the
following characters are allowed:

A-Z, a-z, 0-9, "-"

deviceChannel Use this optional parameter to request a 3DS Requestor Initiated flow to be performed. If
no value is submitted in the request a default value “02” is automatically submitted by the
Gateway.

Currently available values:

• 02 – Browser Flow

• 03 – 3RI Flow

threeRIInd In cases you require a 3RI flow to be performed, you must indicate the character of your
request.

Currently available values:

• 01 – Recurring transaction

• 02 – Instalment transaction

• 03 – Add card

• 04 – Maintain card information

• 05 – Account verification

• 06 – Split / delayed shipment

• 07 – Top-up

• 08 – Mail Order

• 09 – Telephone Order

• 10 – ‘Allow list’ status check

• 11 – Other payment

recurringExpiry This field represents a date after which no further recurring transactions are performed, The
field needs to be submitted in cases, where the first recurring or installment transaction is to
be performed through 3-D Secure. If no specific value is present in the transaction request,
the Gateway calculates the value based on populated recurring parameters.

recurringFrequency Indicates the minimum number of days between authorisations for a recurring transaction
and should include a numeric value between 1 and 9999.

If no specific value is present in the transaction request, the Gateway calculates the value
based on populated recurring parameters.

14

In principle, it may occur that 3-D Secure authentications cannot be processed successfully for technical reasons. If one of the
systems involved in the authentication process is temporarily not responding, the payment transaction will be processed as a
“regular” eCommerce transaction (ECI 7). A liability shift to the card issuer for possible chargebacks is not warranted in this
case. If you prefer that such transactions shall not be processed at all, our technical support team can block them for your Store
on request.

Credit card transactions with 3-D Secure hold in a pending status while cardholders search for their password or need to activate
their card for 3-D Secure during their shopping experience. During this time when the final transaction result of the transaction
is not yet determined, the payment gateway sets the Approval Code to „?:waiting 3-Dsecure“. If the session expires before the
cardholder returns from the 3-D Secure dialogue with his bank, the transaction will be shown as “N:-5103:Cardholder did not return
from ACS”.

Please note that the technical process of 3-D Secure transactions differs in some points compared to a normal transaction flow. If
you already have an existing shop integration and plan to activate 3-D Secure subsequently, we recommend performing some test
transactions on our test environment.

8.1 3-D Secure Split Authentication
If your business or technical processes require the cardholder authentication to be separated from the payment transaction
(authorisation), you can use the transaction type ‘payer_auth’. This transaction type only performs the authentication (and stores
the authentication results).

Example of a ‘payer_auth’ request:

<!-- #include file="ipg-util.asp"-->

<html>

<head><title>IPG Connect Sample for ASP</title></head>

<body>

<p><h1>Order Form</h1></p>

<form method="post" action=" https://test.ipg-online.com/connect/gateway/processing ">

 <input type="hidden" name="txntype" value="payer_auth">

 <input type="hidden" name="timezone" value="Europe/Berlin"/>

 <input type="hidden" name="txndatetime" value="<% getDateTime() %>"/>

 <input type="hidden" name="hash_algorithm" value="HMACSHA256"/>

 <input type="hidden" name="hashExtended" value="<% call createExtendedHash("13.00","978") %>"/>

 <input type="hidden" name="storename" value="10123456789" />

https://test.ipg-online.com/connect/gateway/processing

15

 <input type="hidden" name="checkoutoption" value="combinedpage"/>

 <input type="hidden" name="paymentMethod" value="M"/>

 <input type="text" name="chargetotal" value="13.00" />

 <input type="hidden" name="currency" value="978"/>

 <input type="hidden" name="authenticateTransaction" value="true"/>

<input type="submit" value="Submit">

</form>

</body>

</html>

Example of a ‘payer_auth’ response:

{txndate_processed=17/04/20 17:17:32,

ccbin=542606,

timezone=Europe/Berlin,

oid=C-2101f68a-45e9-4f3c-a6da-1337d5574717,

cccountry=N/A,

expmonth=12,

hash_algorithm=HMACSHA256

currency=978,

chargetotal=13.00,

approval_code=Y:ECI2/5:Authenticated,

hiddenSharedsecret=sharedsecret,

hiddenTxndatetime=2020:04:17-17:32:41,

expyear=2024,

response_hash=LarWYFSNgEToq13HlvyslX6hywi2T/nMn8jMY+1kxkI=,

response_code_3-Dsecure=1,

hiddenStorename=10123456789,

transactionNotificationURL=https://test.ipg-online.com/webshop/transactionNotification,

tdate=1491824253,

ignore_refreshTime=on,

ccbrand=Mastercard,

txntype=payer_auth,

paymentMethod=M,

txndatetime=2020:04:17-17:32:41,

cardnumber=(Mastercard) ... 4979,

ipgTransactionId=84120276797,

status=APPROVED}

In a second step, you need to submit a payment transaction (‘sale’ or ‘preauth’) via the LBOP Web Service API and reference it
to the prior authentication. To review an example of a ‘sale’ transaction that refers to a previous ‘payer_auth’ transaction, please
review the chapter Split Authentication, in the Web Service API integration guide.

16

9. MCC 6012 Mandate in UK

For UK-based Financial Institutions with Merchant Category Code 6012, Visa and Mastercard have mandated additional
information of the primary recipient of the loan to be included in the authorisation message.

If you are a UK 6012 merchant use the following parameters for your transaction request:

Field Name Description, possible values and format

mcc6012BirthDay Date of birth in format dd.mm.yyyy

mcc6012AccountFirst6 First 6 digits of recipient PAN (where the primary recipient account is a card)

mcc6012AccountLast4 Last 4 digits of recipient PAN (where the primary recipient account is a card)

mcc6012AccountNumber Recipient account number (where the primary recipient account is not a card)

mcc6012Surname Surname

mcc6012Zip Postcode

If you are a UK 6051 and 7299 merchant, you can reuse the MCC 6012 parameters to send the optional data to be included in
the authorisation message. However, please note that you have to either populate all the parameters or none otherwise the
transaction will be declined.

10. Data Vault

With the Data Vault product option you can store sensitive cardholder data in an encrypted database in LBOP’s data center to use
it for subsequent transactions without the need to store this data within your own systems.

If you have ordered this feature, the Connect solution offers you the following functions:

• Store or update payment information when performing a transaction

Additionally, send the parameter ‘hosteddataid’ together with the transaction data as a unique identification for the payment
information in this transaction. Depending on the payment type, credit card number and expiry date or IBAN and account holder
name will be stored under this ID if the transaction has been successful. In cases where the submitted ‘hosteddataid’ already
exists for your store, the stored payment information will be updated.

If you want to assign multiple IDs to the same payment information record, you can submit the parameter ‘hosteddataid’ several
times with different values in the same transaction.

If you prefer not to assign a token yourself but want to let the gateway do this for you, send the parameter ‘assignToken’ and set it
to ‘true’. The gateway will then assign a token and include it in the transaction response as ‘hosteddataid’.

If you have use cases where you need some of the tokens for single transactions only (e.g.: for consumers that check out as a
“guest”, use the additional parameter ‘tokenType’ with the values ‘ONETIME’ (card details will only be stored for a short period of
time) or ‘MULTIPAY’ (card details will be stored for use in future transactions).

• Initiate payment transactions using stored data

If you stored cardholder information using the Data Vault option, you can perform transactions using the ‘hosteddataid’ without
the need to pass the credit card or bank account data again. Please note that it is not allowed to store the card code (in most cases
on the back of the card) so that for credit card transactions, the cardholder still needs to enter this value. If you use LBOP’s hosted
payment forms, the cardholder will see the last four digits of the stored credit card number, the expiry date and a field to enter the
card code.

When using multiple Store IDs, it is possible to access stored card data records of a different Store ID then the one that has been
used when storing the record. In that way you can for example use a shared data pool for different distributive channels. To use
this feature, submit the Store ID that has been used when storing the record as the additional parameter ‘hosteddatastoreid’.

• Avoid duplicate cardholder data for multiple records

17

To avoid customers using the same cardholder data for multiple user accounts, the additional parameter
‘declineHostedDataDuplicates’ can be sent along with the request. The valid values for this parameter are ‘true’/’false’. If the
value for this parameter is set to ‘true’ and the cardholder data in the request is already found to be associated with another
‘hosteddataid’, the transaction will be declined. There is no option to check, which existing ‘hosteddataid’ is holding duplicate
cardholder data.

See further possibilities with the Data Vault product in the Integration Guide for the Web Service API.

11. Recurring Payments

For credit card and PayPal transactions, it is possible to install recurring payments using Connect. To use this feature, the following
additional parameters will have to be submitted in the request:

Field Name Possible Values Description

recurringInstallmentCount Number between 1 and 999 Number of installments to be made including the initial
transaction submitted

recurringInstallmentPeriod day

week

month

year

The periodicity of the recurring payment

recurringInstallmentFrequency Number between 1 and 99 The time period between installments

Note that the start date of the recurring payments will be the current date and will be automatically calculated by the system.

The recurring payments installed using Connect can be modified or cancelled using the Virtual Terminal or Web Service API.

12. Transaction Response

12.1 Response to your Success/Failure URLs
Upon completion, the transaction details will be sent back to the defined ‘responseSuccessURL’ or ‘responseFailURL’ as hidden
fields. You can define these URLs in your transaction request. Alternatively, you can define them once in the Customisation
section of our Virtual Terminal.

Field Name Description, possible values and format

approval_code Approval code for the transaction. The first character of this parameter is the most helpful indicator
for verification of the transaction result.

‘Y’ indicates that the transaction has been successful

‘N’ indicates that the transaction has not been successful

“?” indicates that the transaction has been successfully initialised, but a final result is not yet
available since the transaction is now in a waiting status. The transaction status will be updated at
a later stage.

oid Order ID

refnumber Reference number

status Transaction status, e.g.: ‘APPROVED’, ‘DECLINED’ (by authorisation endpoint or due to fraud
prevention settings), ‘FAILED’ (wrong transaction message content/parameters, etc.) or ‘WAITING’
(asynchronous Alternative Payment Methods).

txndate_processed Time of transaction processing

18

Field Name Description, possible values and format

ipgTransactionId Transaction identifier assigned by the gateway, e.g.: to be used for a Void

tdate Identification for the specific transaction

fail_reason Reason the transaction failed

response_hash Hash-Value to protect the communication (see more below)

extended_response_hash Hash-Value to protect the communication, where all response parameters are included in the hash
calculation (see more below)

processor_response_code The response code provided by the backend system.

Please note that response codes can be different depending on the used payment type and
backend system. While for credit card payments, the response code ‘00’ is the most common
response for an approval, the backend for giropay transactions for example returns the response
code ‘4000’ for successful transactions.

fail_rc Internal processing code for failed transactions

terminal_id Terminal ID used for transaction processing

ccbin 6 digit identifier of the card issuing bank

cccountry 3 letter alphanumeric ISO code of the cardholder’s country (e.g.: USA, DEU, ITA, etc.)
Filled with “N/A” if the cardholder’s country cannot be determined or the payment type is not
credit card

ccbrand Brand of the credit or debit card:

Mastercard

VISA

AMEX

DINERSCLUB

MAESTRO

Filled with “N/A” for any payment method which is not a credit card or debit card

schemeTransactionId Credentials on file (COF) specific parameter. Returned in the response by a scheme for stored
credentials transactions to be used in subsequent transaction request for future reference.

For 3-D Secure transactions only:

response_code_3-Dsecure Return code indicating the classification of the transaction:

1 – Successful authentication (VISA ECI 05, Mastercard ECI 02)

2 – Successful authentication without AVV (VISA ECI 05, Mastercard ECI 02)

3 – Authentication failed / incorrect password (transaction declined by Gateway)

4 – Authentication attempt (VISA ECI 06, Mastercard ECI 01)

5 – Unable to authenticate / Directory Server not responding (VISA ECI 07)

6 – Unable to authenticate / Access Control Server not responding (VISA ECI 07)

7 – Cardholder not enrolled for 3-D Secure (VISA ECI 06)

8 – Invalid 3-D Secure values received, most likely by the credit card issuing bank’s Access Control
Server (ACS)

9 – Challenge requested (Allow list prompt requested if challenge required)

Please see note about blocking ECI 7 transactions in the 3-D Secure section of this document.

19

For Partial Approval:

partiallyApprovedAmount Available balance as a partial amount approved.

status Transaction status: ‘PARTIALLY APPROVED’.

This unique status allows you to identify this transaction and subtract the partially approved
amount from the total transaction amount, and request another form of payment, using split-
tender functionality.

Additionally, when using your own error page for negative validity checks (full_bypass=true):

fail_reason_details Comma separated list of missing or invalid variables.

Note that ‘fail_reason_details’ will not be supported in case of payplus and fullpay mode

invalid_cardholder_data true – if validation of card holder data was negative

false – if validation of card holder data was positive but transaction has been declined due to
other reasons

In addition, your custom fields and billing/shipping fields will also be sent back to the specific URL.

Please consider when integrating that new response parameters may be added from time to time in relation to product
enhancements or new functionality.

12.2 How to generate a hash for a response
Make sure to use the parameter ‘response_hash’ to recheck if the received transaction response has really been sent by LBOP to
protect you from fraudulent manipulations. The value is created with a HMAC Hash using the following parameter string:

approval_code|chargetotal|currency|txndatetime|storename

Shared secret (‘sharedsecret’) will be used as a key in HMAC to calculate the hash with the above hash string. The hash
algorithm is the same as the one that you have set in the transaction request.

Please note that you have to implement the response hash validation, when doing so remember to store the ‘txndatetime’ that
you have submitted with the transaction request in order to be able to validate the response hash. Furthermore, you must always
use the https-connection (instead of http) to prevent eavesdropping of transaction details.

You can also use the parameter ‘extended_response_hash’ to include all response parameters in the hash calculation. Please
contact your local support team if you want to enable this feature. This will be managed with a specific setting performed on your
account (service configuration ‘extendedResponseHashSupported’).

12.3 Creating the extended response hash
Step 1: Retrieve all non-empty Gateway specified response parameters and then remove the parameter ‘extended_response_
hash’ from your list, so that it will not get included in the hash calculation. Consider also that shared secret will be used as a key in
HMAC to calculate the hash and the hash algorithm must be the same as the one that you have set in the transaction request.

Step 2: Sort the response parameters in ascending order of the parameter names, where the upper-case characters come before
the lower case (based on ASCII value). Join the parameters’ values to one string with pipe separator (use only parameters’ values
and not the parameters’ names).

Step 3: Pass the created string to the HMAC algorithm while using shared secret (‘sharedsecret’) as a key for calculating the hash
value.

Step 4: Encode the result of HMAC with Base64 to generate the extended response hash.

Only HMAC algorithm (i.e.: HMACSHA256, HMACSHA384 or HMACSHA512) is supported for generating the extended
response hash.

12.4 Server-to-Server Notification
In addition to the response you receive in hidden fields to your ‘responseSuccessURL’ or ‘responseFailURL’, the payment Gateway
can send server-to-server notifications with the above result parameters to a defined URL. This is especially useful to keep your
systems in synch with the status of a transaction. To use this notification method, you can specify an URL in the Customisation
section of the Virtual Terminal or submit the URL in the following additional transaction parameter ‘transactionNotificationURL’.

20

Please note that:

• The Transaction URL is sent as received therefore please don’t add additional escaping (e.g.: using %2f for a Slash (/).

• No SSL handshake, verification of SSL certificates will be done in this process.

• The Notification URL needs to listen on port 443 (https) – other ports are not supported.

The response hash parameter for validation (using the same algorithm that you have set in the transaction request) ‘notification_
hash’ is calculated as follows:

chargetotal|currency|txndatetime|storename|approval_code

Shared secret (‘sharedsecret’) will be used as a key in HMAC to calculate the hash with the above hash string.

Such notifications can also be set up for the recurring payments that get automatically triggered by the gateway. Please contact
your local support team to get a shared secret (‘rcpSharedSecret’) agreed for these notifications. You can configure your
Recurring Transaction Notification URL (‘rcpTransactionNotificationURL’) in the Customisation section of the Virtual Terminal.

In case of the recurring transactions the response hash parameter ‘notification_hash’ is calculated differently as follows:

chargetotal+rcpSharedSecret+currency+txndatetime+storename+approval_code

The shared secret (‘rcpSharedSecret’) is part of the string (it is not used as a key in HMAC to calculate the hash with the hash
string). Moreover, the response hash parameter for the recurring transaction notifications is calculated with the SHA256-value (as
the default value).

21

Appendix I – How to generate a hash for a request

If you are using an HTML form to initiate a transaction, your request needs to include a security hash for verification of the
message integrity.

The hash (parameter ‘hashExtended’) needs to be calculated using all non-empty gateway specified request parameters in
ascending order of the parameter names, where the shared secret (parameter ‘sharedsecret’) must be used as the secret
key for calculating the hash value. The gateway sorts the request parameters in the “natural order”. For strings this means the
“Lexicographic Order", thus the upper-case characters come before the lower case (based on ASCII value).

The request parameters that are not specified in our solution can still be submitted in your request to the gateway, but they must
be excluded from the hash calculation. They will be ignored during processing and returned in the response.

When you are using Direct Post, there is also an option where you do not need to know the card details (PAN, CVV and Expiry
Date) for the hash calculation. This will be managed with a specific setting performed on your store. Please contact your local
support team if you want to enable this feature.

Creating the hash with all parameters
Transaction request values used for the hash calculation can be considered as a set of mandatory as well as optional gateway
specified request parameters depending on the way you decide to build your request. See an example below:

• chargetotal= 13.00

• checkoutoption = combinedpage

• currency= 978

• hash_algorithm=HMACSHA256

• paymentMethod=M

• responseFailURL=https://localhost:8643/webshop/response_failure.jsp

• responseSuccessURL=https://localhost:8643/webshop/response_success.jsp

• storename=10123456789

• timezone= Europe/Berlin

• transactionNotificationURL=https://localhost:8643/webshop/transactionNotification

• txndatetime= 2021:09:06-16:43:04

• txntype=sale

• sharedsecret=sharedsecret (to be used as the secret key for calculating the hash value)

The steps below provide the guidelines on how to calculate a hash, while using the values from our example.

Step1. Extended hash needs to be calculated using all non-empty gateway specified request parameters in ascending order
of the parameter names, where the upper-case characters come before the lower case (based on ASCII value). Join the
parameters’ values to one string with pipe separator (use only parameters’ values and not the parameters’ names).

stringToExtendedHash = 13.00|combinedpage|978|HMACSHA256|M|https://localhost:8643/webshop/response_failure.jsp|
https://localhost:8643/webshop/response_success.jsp|10123456789|Europe/Berlin|https://localhost:8643/webshop/transactio
nNotification|2021:09:06-16:43:04|sale

Corresponding hash string does not include ‘sharedsecret’, which has to be used as the secret key for the HMAC instead.

Step2. Pass the created string to the HMACSHA256 algorithm and using shared secret as a key for calculating the hash value.

HmacSHA256(stringToExtendedHash, sharedsecret)

Step3. Step 3. Encode the result of HMACSHA256 with Base64 and pass it to the gateway as part of your request.

Base64:

EapafBqqOF6N/kch8USkHPGh+fwSko24h6FpQnQHfQ8=

<input type="hidden" name="hashExtended" value="

EapafBqqOF6N/kch8USkHPGh+fwSko24h6FpQnQHfQ8="/>

Only HMAC algorithm (i.e.: HMACSHA256, HMACSHA384 or HMACSHA512) is supported for generating the extended request hash.

22

Appendix II – ipg-util.asp

<!-- google CryptoJS for HMAC -->

<script LANGUAGE=JScript RUNAT=Server src="script/cryptoJS/crypto-js.min.js"></script>

<script LANGUAGE=JScript RUNAT=Server src="script/cryptoJS/enc-base64.min.js"></script>

<script LANGUAGE=JScript RUNAT=Server>

var today = new Date();

var txndatetime = today.formatDate("Y:m:d-H:i:s");

/*

Function that calculates the hash of the following parameters as an example:

- chargetotal

- checkoutoption

- currency

- hash_algorithm

- paymentMethod

- responseFailURL

- responseSuccessURL

- storename

- timezone

- transactionNotificationURL

- txndatetime

- txntype

- and sharedsecret as the secret key for calculating the hash value

*/

function createExtendedHash(chargetotal, currency) {

// Please change the storename to your individual Store Name

var storename = "10123456789";

// NOTE: Please DO NOT hardcode the secret in that script. For example read it from a database.

var stringToExtendedHash = chargetotal|checkoutoption|currency|hash_algorithm|paymentMethod|response
FailURL|responseSuccessURL|storename|timezone|transactionNotificationURL|txndatetime|txntype;

var hashHMACSHA256 = CryptoJS.HmacSHA256(stringToExtendedHash, sharedSecret);

var extendedhash = CryptoJS.enc.Base64.stringify(hashHMACSHA256);

Response.Write(extendedhash);

}

function getDateTime() {

Response.Write(txndatetime);

}

</script>

23

Appendix III – ipg-util.php

<!DOCTYPE HTML>

<html>

<head><title>IPG Connect Sample for PHP</title></head>

<body>

<p><h1>Order Form</h1>

<form method="post" action="https://test.ipg-online.com/connect/gateway/processing">

<fieldset>

<legend>IPG Connect Request Details</legend>

<p>

<label for="storename">Store ID:</label>

<input type="text" name="storename" value="10123456789" readonly="readonly" />

</p>

<p>

<label for="timezone">Timezone:</label>

<input type="text" name="timezone" value="Europe/London" readonly="readonly"/>

</p>

<p>

<label for="chargetotal">Transaction Type:</label>

<input type="text" name="txntype" value="sale" readonly="readonly" />

</p>

<p>

<label for="chargetotal">Transaction Amount:</label>

<input type="text" name="chargetotal" value="13.00" readonly="readonly" />

</p>

<p>

<label for="currency">Currency (see ISO4217):</label>

<input type="text" name="currency" value="978" readonly="readonly" />

</p>

<p>

<label for="txndatetime">Transaction DateTime:</label>

<input type="text" name="txndatetime" value="<?php echo getDateTime(); ?>"/>

</p>

<p>

<label for="hashExtended">Hash Extended:</label>

<input type="text" name="hashExtended" value="<?php echo createExtendedHash('13.00', '978'); ?>"
readonly="readonly" />

</p>

<p>

24

<label for="hashExtended">Hash Algorithm :</label>

<input type="text" name="hash_algorithm" value="HMACSHA256" readonly="readonly" />

</p>

<p>

<label for="hashExtended">Checkout option :</label>

<input type="text" name="checkoutoption" value="combinedpage" readonly="readonly" />

</p>

<p>

<input type="submit" id="submit" value="Submit" />

</p>

</fieldset>

</form>

<?php

function getDateTime() {

return date("Y:m:d-H:i:s");

}

function createExtendedHash($chargetotal, $currency) {

// Please change the store Id to your individual Store ID

// NOTE: Please DO NOT hardcode the secret in that script. For example read it from a database.

$sharedSecret = "sharedsecret";

$separator = "|";

$storeId= "10123456789";

$timezone= "Europe/London";

$txntype= "sale";

$checkoutoption = "combinedpage";

$stringToHash = $chargetotal . $separator . $checkoutoption . $separator . $currency . $separator
. "HMACSHA256" . $separator . $storeId . $separator . $timezone. $separator . date("Y:m:d-H:i:s") .
$separator . $txntype;

$hash = base64_encode(hash_hmac('sha256', $stringToHash, $sharedSecret, true));

return $hash;

}

?>

</body>

</html>

The above is the working PHP example, to run it you can copy the above and paste it on
https://www.w3schools.com/php/phptryit.asp?filename=tryphp_function1

25

Appendix IV – Currency Code List

Currency name Currency code Currency number

CFA Franc BCEAO XOF 952

Afghan Afghani AFN 971

Albanian ALL 008

Algerian Dinar DZD 012

Argentine Peso ARS 032

Armenian Dram AMD 051

Aruban Florin AWG 533

Australian Dollar AUD 036

Azerbaijanian Manat AZN 944

Bahamian Dollar BSD 044

Bahrain Dinar BHD 048

Bangladeshi Taka BDT 050

Barbados Dollar BBD 052

Belarussian Ruble BYN 933

Belize Dollar BZD 084

Bermudian Dollar BMD 060

Bolívar Soberano VES 928

Bolivian Boliviano BOB 068

Bosnian Convertible BAM 977

Botswana Pula BWP 072

Brazilian Real BRL 986

British Pound GBP 826

Bruneian Dollar BND 096

Bulgarian Lev BGN 975

Burundi Franc BIF 108

Cambodian Riel KHR 116

Canadian Dollar CAD 124

Cape Verdean (Cabo Verde Escudo) CVE 132

Cayman Islands Dollar KYD 136

Central African CFA XAF 950

CFP XPF 953

Chilean Peso CLP 152

Chinese Renminbi CNY 156

Colombian Peso COP 170

Comorian Franc KMF 174

26

Currency name Currency code Currency number

Congolese Franc CDF 976

Costa Rican Colon CRC 188

Croatian Kuna HRK 191

Cuban Peso CUP 192

Czech Koruna CZK 203

Danish Krone DKK 208

Djiboutian Franc DJF 262

Dobra STN 930

Dominican Peso DOP 214

East Caribbean Dollar XCD 951

Egyptian Pound EGP 818

Ethiopian Birr ETB 230

Euro EUR 978

Falkland Islands Pound FKP 238

Fijian Dollar FJD 242

Gambian Dalasi GMD 270

Georgian Lari GEL 981

Gibraltar Pound GIP 292

Gourde HTG 332

Guatemalan Quetzal GTQ 320

Guinea Franc GNF 324

Guyanese Dollar GYD 328

Honduran Lempira HNL 340

Hong Kong Dollar HKD 344

Hungarian Forint HUF 348

Iceland Krona ISK 352

Indian Rupee INR 356

Indonesian Rupiah IDR 360

Iranian Rial IRR 364

Iraqi Dinar IQD 368

Israeli New Shekel ILS 376

Jamaican Dollar JMD 388

Japanese Yen JPY 392

Jordanian Dinar JOD 400

Kazakhstani Tenge KZT 398

Kenyan Shilling KES 404

Kuwaiti Dinar KWD 414

Kwanza AOA 973

27

Currency name Currency code Currency number

Laotian Kip LAK 418

Lebanese Pound LBP 422

Liberian Dollar LRD 430

Libyan Dinar LYD 434

Lilangeni SZL 748

Loti LSL 426

Macau Pataca MOP 446

Macedonian Denar MKD 807

Malagasy Ariary MGA 969

Malawian Kwacha MWK 454

Malaysian Ringgit MYR 458

Maldivian Rufiyaa MVR 462

Mauritian Rupee MUR 480

Mexican Peso MXN 484

Moldovan Leu MDL 498

Mongolian Tugrik MNT 496

Moroccan Dirham MAD 504

Mozambique Metical MZN 943

Mvdol BOV 984

Myanmar Kyat MMK 104

Nakfa ERN 232

Namibia Dollar NAD 516

Nepalese Rupee NPR 524

Netherlands Antillean Guilder ANG 532

New Zealand Dollar NZD 554

Ngultrum BTN 064

Nicaraguan Cordoba Oro NIO 558

Nigerian Naira NGN 566

Norwegian Krone NOK 578

Omani Rial OMR 512

Ouguiya MRU 929

Pakistani Rupee PKR 586

Panamanian Balboa PAB 590

Papua New Guinean Kina PGK 598

Paraguayan Guarani PYG 600

Peruvian Nuevo Sol PEN 604

Philippine Peso PHP 608

Polish Zloty PLN 985

Qatari Rial QAR 634

Currency name Currency code Currency number

Romanian New Leu RON 946

Russian Ruble RUB 643

Rwandan Franc RWF 646

Saint Helena Pound SHP 654

Salvador Colon SVC 222

Samoan Tala WST 882

Saudi Rihal SAR 682

Serbian Dinar RSD 941

Seychelles Rupee SCR 690

Sierra Leonean SLL 694

Singapore Dollar SGD 702

Solomon Islands Dollar SBD 090

Som KGS 417

Somali Shilling SOS 706

South African Rand ZAR 710

South Korean Won KRW 410

South Sudanese Pound SSP 728

Sri Lanka Rupee LKR 144

Sudanese Pound SDG 938

Surinamese Dollar SRD 968

Swedish Krona SEK 752

Swiss Franc CHF 756

Syrian Pound SYP 760

Taiwan Dollar TWD 901

Tajikistani Somoni TJS 972

Tanzanian Shilling TZS 834

Thai Baht THB 764

Tongan Pa’anga TOP 776

Trinidad and Tobago Dollar TTD 780

Tunisian Dinar TND 788

Turkish Lira TRY 949

Turkmenistan New Manat TMT 934

Uganda Shilling UGX 800

Ukrainian Hryvnia UAH 980

UAE Dirham AED 784

US Dollar USD 840

Uruguayan Peso UYU 858

Uzbekistan Sum UZS 860

Vanuatu Vatu VUV 548

29

Currency name Currency code Currency number

Vietnamese Dong VND 704

Yemeni Rial YER 886

Zambian Kwacha ZMW 967

Zimbabwe Dollar ZWL 932

Appendix V – Payment Method List

If you let your consumer select the payment method in your website or want to define the payment method yourself, submit the
parameter ‘paymentMethod’ in your transaction request. If you do not submit this parameter, the gateway will display a hosted
page to the consumer to choose from the payment methods that are enabled for your store and supported for the combination of
the consumer’s country and the transaction currency.

Payment Method Value

American Express A

Apple Pay on the web applePay

Diners C

Google Pay on the web googlePay

Maestro MA

Maestro UK maestroUK

Mastercard M

PayPal paypal

Visa (Credit/Debit/Electron/Delta) V

Appendix VI – PayPal

Refer to the following information when integrating PayPal as a payment method.

Connect
Transaction Type (txntype)

PayPal operation

Sale SetExpressCheckoutPayment
(sets PaymentAction to Authorisation in SetExpressCheckout and
DoExpressCheckoutPayment requests)

Preauth GetExpressCheckoutDetails

sale – with additional parameters for installing a
Recurring Payment

DoExpressCheckoutPayment*

Postauth DoCapture (,DoReauthorisation)

Void DoVoid

Address handling
If you pass a complete set of address values within your request to Connect (name, address1, zip, city and country within billing
and/or shipping address), these values will be forwarded to PayPal, setting the PayPal parameter ‘addressOverride’ to ‘1’.

Please note that it is an eligibility requirement for PayPal’s Seller Protection that the shipping address will be submitted to PayPal.

30

If you submit no or incomplete address data within the Connect request, no address data will be forwarded to PayPal and the
PayPal parameter ‘addressOverride’ will not be set.

Regardless of that logic, the payment gateway will always store the shipTo address fields received from PayPal in the GetDetails
request in the ShippingAddress fields, possibly overwriting values passed in the request to Connect (such overwriting depends on
the above logic).

* If you want to use PayPal’s Reference Transactions feature for recurring payments, please contact PayPal upfront to verify if your
PayPal account meets their requirements for this feature.

Recurring Payment Transaction
You have to submit a SALE transaction request with the corresponding parameters to install the recurring payments. The first
transaction is always conducted immediately along with the request.

The subsequent transactions are executed by the Gateway’s scheduler, via the API Web Service, as defined during the initial SALE
transaction with the installation.

Appendix VII – Digital Wallets

Refer to the following information only when you are integrating Google Pay or/and Apple Pay on the web as a payment method.

Google Pay on the web
Google Pay is a digital wallet solution provided by participating banks and supported by Google. It allows users to store cards from
participating banks. To learn more about Google Pay, please visit https://pay.google.com/about/

Initiating a transaction (Checkout Process)
The checkout process for Google Pay can be initiated with a “Google Pay” button that you place on your website either as a
specifically alternative checkout option or next to other payment methods that you offer.

When consumers click this button, you construct a Sale or PreAuth transaction request, with the required parameters including
the payment method parameter. This will take your customers to a hosted page from where they can be redirected to the Google
Pay payment screen, with list of cards added to customer Google Pay wallet. Selecting the card by customers from the list and
clicking the ‘Pay’ button would complete the payment.

Alternatively, you can let your customer select the payment method on the gateway’s hosted payment method selection page. If
you prefer that option, simply do not submit the payment method parameter.

Apple Pay on the web
Apple Pay on the web allows making purchases on the web in Safari on your iPhone, iPad, or Mac, you can use Apple Pay without
having to create an account or fill out lengthy forms. Moreover, with Touch ID on MacBook Air and MacBook Pro, paying takes
just a touch and is quicker, easier, and more secure than ever before. To learn more about Apple Pay on the web, please visit
https://developer.apple.com/documentation/apple_pay_on_the_web

Initiating a transaction (Checkout Process)
The checkout process for Apple Pay on web can be initiated in Safari browser with “Apple Pay” button that you place on your
website either as a specifically alternative checkout option or next to other payment methods that you offer.

When consumers click this button, you construct a Sale or PreAuth transaction request, with the required parameters including
the payment method parameter. This will take your customers directly to the Apple Pay payment screen, with list of cards added
to customers’ Apple Pay wallet. Selecting the card by customers from the list and authenticate using Touch id/Face id on Apple
device would complete the payment.

Alternatively, you can let your customer select the payment method on the gateway’s hosted payment method selection page. If
you prefer that option, simply do not submit the payment method parameter.

Apple Pay on the web transaction can only be initiated with Apple’s Safari browser and authorisation from an iOS device like
iPhone, Apple Watch or MacBook.

31

The generic fields to be considered:

Field Name M/O Description, possible values and format

checkoutoption M Set the value for this parameter to ‘combinedpage’

paymentMethod O Set the value for this parameter to ‘googlePay’ or ‘applePay’

If you do not submit this parameter, gateway will display a page to your consumer to choose from the
payment methods activated for your store.

COMM0035 (07/23)

Find out more

• Go to lloydsbank.com/business Please contact us if you’d like this
information in an alternative format such as
Braille, large print or audio.

Important information

We accept calls made via Text Relay. We may monitor or record
phone calls with you in case we need to check we have carried
out your instructions correctly and to help improve the quality
of our service. Lloyds Bank is a trading name of Lloyds Bank plc
and Bank of Scotland plc. Lloyds Bank plc. Registered Office:
25 Gresham Street, London EC2V 7HN. Registered in England
and Wales No. 2065. Bank of Scotland plc. Registered Office:
The Mound, Edinburgh EH1 1YZ. Registered in Scotland No.
SC327000. Authorised by the Prudential Regulation Authority
and regulated by the Financial Conduct Authority and the
Prudential Regulation Authority.

We aim to provide the highest level of customer service
possible. If you do experience a problem, we will always seek to
resolve this as quickly and efficiently as possible.

If you would like a copy of our complaint procedures, please
contact your relationship manager or any of our offices. You
can also find details at lloydsbankcommercial.com/contactus

http://www.lloydsbank.com/business
http://www.lloydsbankcommercial.com/contactus

	Getting Support
	1.	Introduction
	2.	Payment process options
	2.1	Hosted Payment Page
	2.2	Direct Post
	3.	Getting Started
	3.1	Checklist
	3.2	ASP Example
	3.3	PHP Example
	3.4	Amounts for test transactions
	4.	Mandatory Fields
	5.	Optional Form Fields
	6.	Using your own forms to capture the data
	6.1	Capture payment details
	6.2	Capture billing information
	6.3	Capture shipping information
	6.4	Validity checks
	7.	Additional Custom Fields
	8.	3-D Secure
	8.1	3-D Secure Split Authentication
	9.	MCC 6012 Mandate in UK
	10.	Data Vault
	11.	Recurring Payments
	12.	Transaction Response
	12.1	Response to your Success/Failure URLs
	12.2	How to generate a hash for a response
	12.3	Creating the extended response hash
	12.4	Server-to-Server Notification
	Appendix I – How to generate a hash for a request
	Appendix II – ipg-util.asp
	Appendix III – ipg-util.php
	Appendix IV – Currency Code List
	Appendix V – Payment Method List
	Appendix VI – PayPal
	Appendix VII – Digital Wallets

Accessibility Report

		Filename:

		COMM0035_0723_V4_Web-Accessible.pdf

		Report created by:

		SDK Script, steve.vidler@officedepot.eu

		Organization:

		

 [Personal and organization information from the Preferences > Identity dialog.]

Summary

The checker found no problems in this document.

		Needs manual check: 0

		Passed manually: 2

		Failed manually: 0

		Skipped: 1

		Passed: 29

		Failed: 0

Detailed Report

		Document

		Rule Name		Status		Description

		Accessibility permission flag		Passed		Accessibility permission flag must be set

		Image-only PDF		Passed		Document is not image-only PDF

		Tagged PDF		Passed		Document is tagged PDF

		Logical Reading Order		Passed manually		Document structure provides a logical reading order

		Primary language		Passed		Text language is specified

		Title		Passed		Document title is showing in title bar

		Bookmarks		Passed		Bookmarks are present in large documents

		Color contrast		Passed manually		Document has appropriate color contrast

		Page Content

		Rule Name		Status		Description

		Tagged content		Passed		All page content is tagged

		Tagged annotations		Passed		All annotations are tagged

		Tab order		Passed		Tab order is consistent with structure order

		Character encoding		Passed		Reliable character encoding is provided

		Tagged multimedia		Passed		All multimedia objects are tagged

		Screen flicker		Passed		Page will not cause screen flicker

		Scripts		Passed		No inaccessible scripts

		Timed responses		Passed		Page does not require timed responses

		Navigation links		Passed		Navigation links are not repetitive

		Forms

		Rule Name		Status		Description

		Tagged form fields		Passed		All form fields are tagged

		Field descriptions		Passed		All form fields have description

		Alternate Text

		Rule Name		Status		Description

		Figures alternate text		Passed		Figures require alternate text

		Nested alternate text		Passed		Alternate text that will never be read

		Associated with content		Passed		Alternate text must be associated with some content

		Hides annotation		Passed		Alternate text should not hide annotation

		Other elements alternate text		Passed		Other elements that require alternate text

		Tables

		Rule Name		Status		Description

		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot

		TH and TD		Passed		TH and TD must be children of TR

		Headers		Passed		Tables should have headers

		Regularity		Passed		Tables must contain the same number of columns in each row and rows in each column

		Summary		Skipped		Tables must have a summary

		Lists

		Rule Name		Status		Description

		List items		Passed		LI must be a child of L

		Lbl and LBody		Passed		Lbl and LBody must be children of LI

		Headings

		Rule Name		Status		Description

		Appropriate nesting		Passed		Appropriate nesting

Back to Top

